

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

PAN-Doped SiO₂ as a New Packing Material for the Online Preconcentration and Determination of Trace Lead (II) in Biological and Environmental Samples Using Flame Atomic Absorption

S. L. Zhao^a; H. Yan^a; H. D. Liang^a; Z. Z. Yan^a; Y. Q. Lin^a

^a School of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai, P. R. China

Online publication date: 17 March 2010

To cite this Article Zhao, S. L. , Yan, H. , Liang, H. D. , Yan, Z. Z. and Lin, Y. Q.(2010) 'PAN-Doped SiO₂ as a New Packing Material for the Online Preconcentration and Determination of Trace Lead (II) in Biological and Environmental Samples Using Flame Atomic Absorption', Spectroscopy Letters, 43: 2, 122 – 129

To link to this Article: DOI: 10.1080/00387010903285551

URL: <http://dx.doi.org/10.1080/00387010903285551>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PAN-Doped SiO_2 as a New Packing Material for the Online Preconcentration and Determination of Trace Lead (II) in Biological and Environmental Samples Using Flame Atomic Absorption

S. L. Zhao,
H. Yan,
H. D. Liang,
Z. Z. Yan,
and Y. Q. Lin

School of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai, P. R. China

ABSTRACT A flow injection online preconcentration and separation–FAAS method was developed for determination of trace lead in biological and environmental samples. Effects of chemicals and flow variables were studied. Under the optimal conditions, the enhancement factor can reach 101 with a sample consumption of 6.5 mL and throughput of 45 hr^{-1} . The detection limit (3σ) was $0.24 \mu\text{g L}^{-1}$. At the level of $20 \mu\text{g L}^{-1}$ and $40 \mu\text{g L}^{-1}$ of Pb (II), the precisions (RSD, $n = 11$) were found to be 2.2% and 1.2%, respectively. The spike recoveries of real samples were in the range of 97–103%.

KEYWORDS 1-(2-pyridylazo)-2-naphthol, flame atomic absorption spectrometry, lead, online preconcentration, silica gel

INTRODUCTION

Lead is one of the most ubiquitous elements in the environment and recognized as a major health risk to humans and animals.^[1,2] The determination of trace levels of lead in a variety of samples is very important in ecological and hygienic pollution and the monitoring of environmental pollution because of its high-toxicity, accumulative, and persistent character in the environment and living organism.^[3] Flame atomic absorption spectrometry (FAAS) with its relative low cost and good analytical performance is nowadays the main instrument for the purpose. Though FAAS offers fast elemental analysis in the research laboratories, the direct determination of trace metals in water systems remains a challenge because of their low concentrations, interferences of the matrix, and the instruments' poor sensitivity. Therefore, preconcentration and separation procedures, including liquid–liquid extraction,^[4] co-precipitation,^[5] cloud point extraction,^[6] electrodeposition,^[7] solid-phase extraction (SPE),^[8] and the like, are often necessary. Among these, SPE, especially in conjunction with a flow injection (FI) system based on the use of a microcolumn packed with solid sorbent,

Received 14 December 2008;
accepted 16 June 2009.

Address correspondence to
H. D. Liang, School of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, P. R. China.
E-mail: Lianghuading@163.com

is one of the important enrichment techniques and most commonly employed for trace-metal preconcentration due to advantages such as high efficiency, simplicity, avoidance of solvent exposure, and the possibility of combination with atomic absorption spectrometry (AAS), permitting higher enrichment factors with higher sample throughput.^[9]

1-(2-Pyridylazo)-2-naphthol (PAN) has two functional groups $-N=$ and $-OH$ for ion exchange and/or complexation of metal ions and has been applied to extraction-complexation of metal ions.^[10-14] Also, it is used as a modifier loaded on solid-phase extractants, such as polyethylene powder,^[15] micro-crystalline naphthalene,^[16] resin,^[17] titanium dioxide,^[18] chromosorb-106 resin,^[19] and PTFE knotted reactor^[20] to preconcentrate trace elements. Silica gel is a frequently used as sorbent due to its good physical and chemical properties such as porosity, high surface area, negligible capacity to resist swelling or shrinking with change in solvent conditions to withstand high linear flow rates.^[21] In most of the previous studies, silica gel was loaded or functionalized with various ligands like diethyl-dithiocarbamate,^[22] macrocycle,^[23] 2-mercaptopbenzothiazole,^[24] 2,4,6-trimorpholino-1,3,5-triazine,^[25] glycerol,^[26] cadion 2B,^[27] Tris(2-aminoethyl) amine,^[28] aspergillus niger,^[29] nitroso-R-salt,^[30] 1-(2-thiasolylazo)-2-naphthol,^[31] and the like, in order to develop chelating and selective sorbents for online and off-line preconcentration and separation procedures. Moreover, it has a large molecule that can be securely entrapped inside the pores of silica gel and exhibits reasonable stability.^[32,33] PAN-doped silica gel has been investigated as a sorbent for the removal of metal ions from aqueous media and proved to possess several advantages including (1) high rate of attainment of equilibrium; (2) high stability towards temperature and medium; and (3) easy regeneration and complete recovery of sorbed metal ions.^[33] However, the procedures in some of the reported studies are tedious and time consuming or

chemical consuming, and its use as a packing material in FI online microcolumn preconcentration and separation for AAS determination of trace metals is rare. Thus, in the present work, we report the application of PAN-doped silica gel as an SPE material for the online preconcentration and fast determination of Pb ion by FAAS in environmental samples. Several analytical parameters relevant to the retention, elution, and quantitative recoveries of analyte were examined.

MATERIALS AND METHODS

Apparatus

TAS 990 atomic absorption spectrometer (Beijing Purkinje General Instrument Co., Ltd., Beijing, China) equipped with hollow cathode Lead lamp (Beijing ShuGuangMing Electronic Lighting Instrument Co., Ltd., Beijing, China) was used for the element determination under the following conditions: wavelength was 283.3 nm, both slit widths were 0.4 nm. The flame conditions (2.2-L·min⁻¹ acetylene and 9.4-L·min⁻¹ air) were employed according to the standard recommendations. The peak height absorbance was used for quantitative analysis.

A model FIA-3100 flow injection system (Vital Instruments Co., Ltd., Beijing, China) consists of two peristaltic pumps and a standard rotary injection valve (eight ports on the rotor and eight ports on the stator). It was employed for the FI online SPE. The microcolumn that we used to capture the analyte in aqueous solution was made of a PTFE tube with an effective length of 1 cm and an inner diameter of 2 mm. Tygon pump tubings (Vital Instruments Co., Ltd., Beijing, China) were used to deliver samples and reagents. The rotation speed of the two peristaltic pumps, their stop and go intervals, and the actuation of the injection valve were all programmed (Table 1). Polytetrafluoroethylene tubings (0.5-mm i.d.) were used for all connections. These connections were kept as short as possible to minimize the dead volumes.

TABLE 1 Operational Sequence and the Preferences of the FI Online Preconcentration System Coupled With FAAS

Step	Function	Time (s)	Pumped medium		Flow rate (mL·min ⁻¹)		Valve position
			Pump 1	Pump 2	Pump 1	Pump 2	
1 (Fig. 1a)	Sampling	60	—	Sample	Off	6.5	Fill
2 (Fig. 1b)	Elution	20	0.8-mol·L ⁻¹ HCl	—	4.3	Off	Injection

A Model Qwave-2000 microwave digestion system (Questron Co., Mississauga, Canada) was used to digest the samples. All instrumental parameters for the sample digestion were chosen according to the recommendations of EPA.

For pH measurements, a Delta320 METTLER (Mettler Toledo, United States) pH meter was used.

Reagents and Materials

All reagents (Sinopharm Chemical Reagent Co., Ltd., China) that we used had the highest available purity and were at least of analytical grade. Doubly deionized water (DDW, $18.2\text{ M}\Omega\text{ cm}^{-1}$) obtained from a WaterPro water system (Labconco Corporation, Kansas City, MO, United States) was used throughout the experiments. Standard Pb (II) solutions were prepared daily by appropriate dilution of a stock solution (1000 mg L^{-1} ; NRCSM, Beijing, China) with DDW. The working solutions were prepared by series dilution of the stock solution immediately prior to their use.

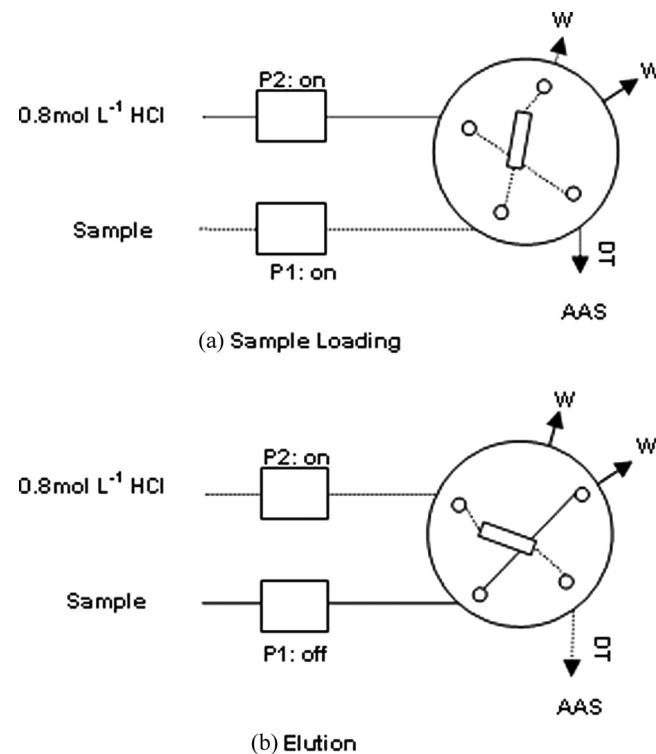
The certified reference materials (CRM; NRCSM, Beijing, China)—GBW07605 (bush branches and leaves) and GBW 07602 (tea leaves)—were analyzed to check the accuracy of the developed method.

Sample Preparation

Certain amounts of the sample (0.2000 g for bush leaves and branches and 0.2006 g for tea leaves) were mixed with 5 mL of concentrated HNO_3 and 2 mL HClO_4 , digested with Qwave-2000 microwave digestion system, and gently heated on a hot-plate until white fumes appeared. After cooling, the clear digest was adjusted to the optimal pH range with buffer solution and then diluted to an appropriate volume for the determination of Pb (II).

Preparation of PAN/SiO₂

The preparation of PAN-doped sol-gel was conducted according to the previous studies.^[31] In a 200-ml beaker, 10.0 ml of tetraethoxysilane, 10.0 ml of double distilled water, and 25-ml ethanol solution of PAN in the presence of $10^{-2}\text{-mol L}^{-1}$ ammonium fluoride as a catalyst were mixed, allowed to gel, and dried in oven to constant weight. After drying, the glasses were crushed and sieved with 80 and 100 meshes. The sieved glasses were thoroughly washed


with 0.8-mol L^{-1} HCl and subsequently with distilled water to remove the undoped reagent. The entrapped PAN on the sorbent was 20 mg g^{-1} by spectrophotometric determination. The obtained material was denominated as PAN/SiO₂.

Microcolumn Preparation

45 Mg of PAN/SiO₂ were packed into the microcolumn. The microcolumn was end-capped with glass wool (to prevent the sorbent from being swept out by a liquid flow) and connected to the injector valve. The packed column was sequentially washed with DDW, 0.8-mol L^{-1} HCl, and DDW until no lead signal was detected with AAS.

Procedures

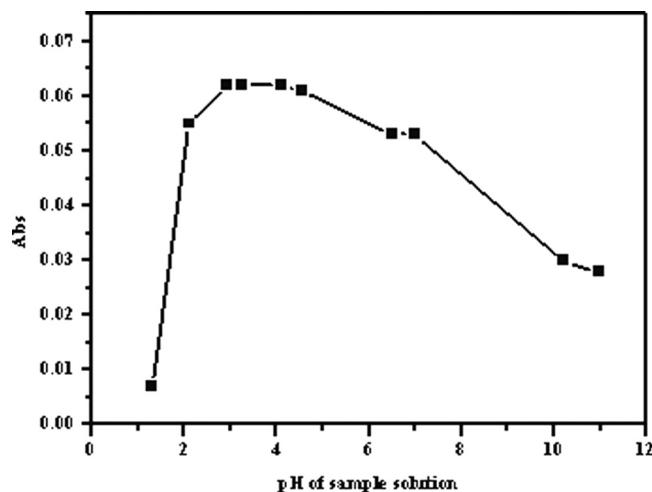
The FI manifold and its operation sequence for the online SPE are shown in Fig. 1 and Table 1, respectively. In Step 1 (Fig. 1a), Pump 1 was activated so that the sample solution was loaded onto the microcolumn; the effluent from the column was flowing to waste. At the same time, Pump 2 started to introduce diluted HCl solution to FAAS for baseline. In Step 2

FIGURE 1 Manifold for the FI online SPE coupled with FAAS system for lead determination. AAS, atomic absorption spectrometry; P1 and P2, peristaltic pumps; DT, delivery tubing; W, waste. Valve position, (a) Sample loading, (b) Elution.

(Fig. 1b), Pump 2 started to work while Pump 1 was stopped and the injection valve turned to the inject position to introduce diluted HCl solution for eluting the analytes retained on the column.

RESULTS AND DISCUSSION

Stability of the Sorbent


The stability of the PAN doped on silica gel was checked by repeatedly eluting the PAN/SiO₂ column with 10 ml of 1.0-M HCl. The eluent was determined by spectrophotometric technique for the determination of leached dye in the eluting. The results showed that PAN/SiO₂ could tolerate at least 50-fold washing and that the PAN was not washed by the mobile phase and was stable on the surface of silica gel.

Optimization of the FI Online Preconcentration System

To optimize the system, the main efforts were focused on the conditions for sample loading (sample acidity, sample loading time and rate) and Pb (II) eluting from the column (wash medium, elution rate, and eluent concentration) in order to obtain highly sensitive, accurate, and reproducible results.

The influence of sample acidity on the preconcentration efficiency of Pb (II) was examined in pH values of 1.3–11.0 (adjusted with diluted HNO₃, NaOH for pH 1–2, NaOH and potassium hydrogen phthalate solution for pH 3–6, and boric acid and sodium hydroxide for pH 7–11) with an ionic strength of 0.3 mmol, at a sample loading rate of 4.5 mL min⁻¹ with 60-s preconcentration for 20- μ g-L⁻¹ Pb. Fig. 2 describes the relationship between the peak height absorbance signal of lead and the pH of the sample. Clearly, the optimum pH of the sample range was quite wide, ranging from 2.5 to 5.0. The lower absorbance signal may result from the decrease in the formation constant of Pb(II)–PAN complex owing to the protonation of PAN in a lower pH values (pH < 2) solution, and the reaction of Pb (II) with hydroxyl ions at higher pH values (pH > 6). For the work, a pH of 3.5 in the sample was selected.

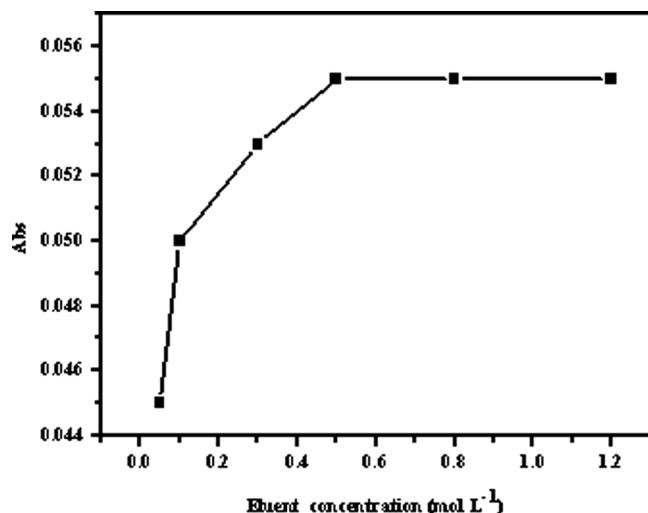
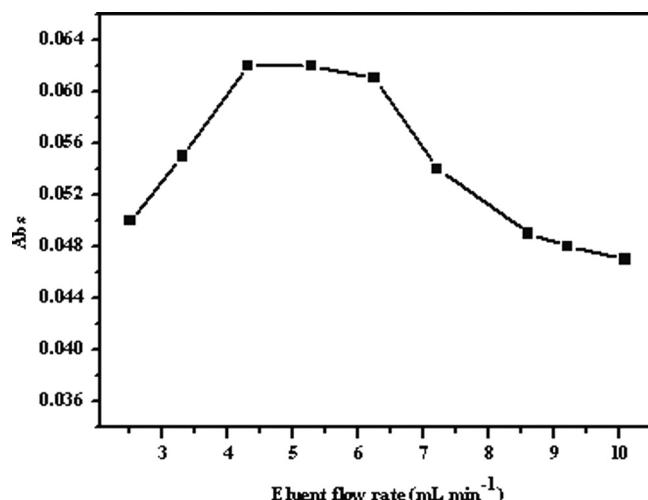

The effect of sample loading rate was tested using a standard solution of 20- μ g-L⁻¹ Pb with 60-s preconcentration. Peak height absorbance was found

FIGURE 2 Effect of sample acidity. Abs, absorbance. Operation conditions: 20 μ g L⁻¹ Lead (II); 4.5 mL \cdot min⁻¹ preconcentration flow rate; 60 s preconcentration time and 4.3 mL \cdot min⁻¹ eluent (0.8 mol L⁻¹ HCl) elution flow rate.


to increase linearly with the sample loading rate up to at least 6.9 mL min⁻¹. This indicates that the kinetic property of PAN/SiO₂ is sufficiently favorable to allow easy retention of the analyte. In the next part of the experiments, 6.5 mL min⁻¹ was selected as the optimized sampling rate. Under the optimized sampling rate, a linear increase in peak height for 20- μ g-L⁻¹ Pb was observed with increasing sample loading time up to at least 110 s. It is worthwhile to note that the present column preconcentration system permits the use of high sample loading rates to achieve high enrichment factors within a defined time period due to its favorable kinetics and low hydrodynamic impedance. Higher sensitivity enhancements could also be obtained through increasing the sample loading time; however, the loading time selected in the experiment was 60 s in order to achieve a high sampling frequency with a reasonable degree of sensitivity.

The choice of a suitable eluent with an appropriate concentration and flow rate is important for the analytical performance of the FI online preconcentration AAS system. In a preliminary study for this work, 0.5-mol-L⁻¹ HCl, HNO₃, and H₂SO₄ solutions (as the adsorption of Pb at pH < 1 can be negligible) at a flow rate of 4.3 mL min⁻¹ were used for desorption of the retained Pb from the microcolumn, respectively. The results showed that the optimal elution was HCl. Therefore, HCl was selected for the further experiments. Various concentrations and flow rates of HCl were used for the check of the

FIGURE 3 Effect of eluent concentration. Operation conditions: The sample pH was 3.5. Other conditions were the same as in Figure 2.

influent of eluent concentration and flow rate (the results are shown in Fig. 3 and Fig. 4). It was found that the peak height absorbance of lead increased significantly, and no stable absorbance was obtained as the concentration of HCl incremented from 0.1 to 0.5 mol L⁻¹ (as shown in Fig. 3). However, a plateau in absorbance reached with a further increase in HCl concentration. A sampling rate of 0.8-mol-L⁻¹ HCl was selected. The influence of eluent flow rate was checked in the range of 2.5–10.8 mL min⁻¹. The results showed (Fig. 4) that the peak height absorbance of lead increased in the initial stage owing to the increase in the Pb (II) desorbed from the sorbent. A plateau in absorbance was also obtained at the flow rate of 4.0–6.2 mL min⁻¹.

FIGURE 4 Effect of eluent flow rate. Operation conditions were the same as in Figure 3 except eluent flow rate.

Nevertheless, a decreasing trend in absorbance of lead appeared at the higher flow rate. Low absorbance of lead at high eluent flow rate could result from the dilution of analyte by the large amount of eluent. So, a flow rate of 4.3 mL min⁻¹ was selected for the elution of retained Pb (II). Under optimized conditions, the column can be reused for at least 20 instances of preconcentrations and elutions without decreasing the enrichment factor of the solid phases. It was noted that the use of strong acid HCl as eluent may cause some problems such as the corrosion of the injection valve or the nebulizer, so timely and thorough washing of the valve and nebulizer with DDW after experiments is strongly recommended.

Interference Studies

The influence of matrix ions in water samples on the recovery of Pb (II) ions was also investigated. No significant interferences from large amounts of alkaline or alkaline earth metal ions (1000-fold) were observed under the optimized conditions given in Table 1 and Fig. 1. The tolerable concentrations of transition ions such as Cd(II), Cu(II), Fe(III), Fe(II), Co(II), Ni(II), Mn(II), Ag(I), and Zn(II) for the determination were found to be 5.0, 5.0, 1.0, 3.0, 3.0, 5.0, 5.0, 4.0, and 6.0 mg L⁻¹, respectively.

Performance of the FI Online Preconcentration System and Application to the Sample Analysis

The analytical characteristic performance data for the FI online SPE coupled with FAAS system were

TABLE 2 Analytical Performance of FI Online Preconcentration System Under the Conditions in Table 1

Parameter	Performance
Preconcentration time (s)	60
Enhancement factor (samples hr ⁻¹)	101
Sampling frequency (hr ⁻¹)	45
Sample consumption (mL)	6.5
Eluent flow rate (mL · min ⁻¹)	4.3
Precision (RSD, <i>n</i> = 11) (%)	2.2 (20 µg · L ⁻¹) and 1.2 (40 µg L ⁻¹)
Detection limit (3σ) (µg · L ⁻¹)	0.24
Range of calibration graph (µg · L ⁻¹)	1.0–60
Calibration function (<i>n</i> = 6) (A, peak height absorbance, C in µg · L ⁻¹)	$A = 0.0014 + 0.0031 \times C$
Correlation coefficient	0.9993

TABLE 3 Analytical Results (Mean \pm s, n = 3) for the Determination of Trace Lead in Real Samples

Sample	Unit	Concentration			Recovery (%)
		Certified	Determined	Added	
GBW 07602	$\mu\text{g g}^{-1}$	7.1 \pm 1.1	7.0 \pm 1.0	10	99
GBW07605	$\mu\text{g g}^{-1}$	4.4 \pm 0.3	4.2 \pm 0.2	5	102
Tap water	$\mu\text{g L}^{-1}$	—	1.6 \pm 0.7	2	103
Mineral water	$\mu\text{g L}^{-1}$	<1000	4.21 \pm 0.33	5	97
Ground water	$\mu\text{g L}^{-1}$	—	7.76 \pm 0.78	5	99

presented in Table 2. With a sample loading time of 60 s at a sample loading flow rate of 6.5 mL min⁻¹, the enhancement factors were 101 at a sample throughput of 45 hr⁻¹ compared with the conventional FAAS method. The detection limits (3 σ) were

0.24 $\mu\text{g L}^{-1}$. The precision (RSD, n = 11) were found to be 2.2% and 1.2% at the level of 20 $\mu\text{g L}^{-1}$ and 40 $\mu\text{g L}^{-1}$ of Pb(II), respectively.

To evaluate the accuracy and the application performance of the developed method, the CRMs, GBW07602 and GBW07605, and three water samples were analyzed. As is shown in Table 3, the concentrations of lead in the CRMs determined by the present method using simple aqueous standards for calibration were in good agreement with the certified value. And the recoveries of lead spiking for the CRMs and water samples were in the range of 97–103%.

CONCLUSION

The inexpensive and facile material 1-(2-pyridylazo)-2-naphthol doped silica gel (PAN/SiO₂)

TABLE 4 Comparisons of Some Parameters for Online Preconcentration and Determination of Lead (II) Using Other Sorbents

Sorbent	Spectrometer model and manufacturer and its location	Sample	EF	DL ($\mu\text{g L}^{-1}$)	F (h ⁻¹)
PAN chelate in a knotted reactor ^[20]	Varian AA 220 (Mulgrave, Victoria, Australia)	Environmental samples	26.5	0.43	48
Lead-selective chromatographic resin ^[34]	Shimadzu AA-6400 (Shimadzu corporation, Kyoto, Japan)	River-water and seawater	—	0.05	—
Pyrogallol red loaded activated carbon ^[35]	Perkin-Elmer AA 2380 (Perkin-Elmer Life and Analytical Sciences, Shelton, CT, USA)	Natural water	100	1.0	—
Poly (aminophosphonic acid) ^[36]	Perkin-Elmer AA 5000	Natural water	—	3.1	48
2-(2-Benzothiazolylazo)-2-p-cresol modified polyurethane foam (PUF) ^[37]	Varian AA 220	Seafood samples	26	1	48
Ammonium O,O-diethyldithiophosphate chelate combined with AC and PUF ^[38]	Varian AA 179	Water	63 and 294	3 and 0.8	—
Dithiocarbamate functionalized or surface sorbed Merrifield resin beads ^[39]	Perkin-Elmer AA 100	Natural water	48 and 27	1.3 and 1.44	—
AC loaded with xylanol orange ^[40]	Perkin-Elmer AA 2380	Water samples	200	0.4	—
Multiwall carbon nanotubes ^[41]	Shimadzu AA-6800	Water samples	44.2	2.6	14
Polychlorotrifluoroethylene ^[42]	—	Water	—	2.7	30
Immobilized salen (N, N'-bis (salicylidene) ethylenediamine) ^[43]	Buck Scientific AA 210 VGP (Buck Scientific Co., Cl, USA)	Water samples, multivitamin tablet, and standard reference alloys	75	2.6	—
Amberlite XAD-2 loaded with PAN (off-line) ^[44]	Perkin-Elmer AA 3110	River water samples	50	23.2	—
Dibenzylidithiocarbamate chelates on Dowex Optipore V-493 ^[45]	Perkin-Elmer AA 700	Environmental samples	50	0.65	—
Multiwalled carbon nanotubes ^[46]	Perkin-Elmer AA 700	—	80	0.30–0.60	—
PAN-doped silica gel [this work]	Purkinje General TAS 990	Water and biological samples	101	0.24	45

Note. EF = Enrichment factor, DL = detection limit, F = sampling frequency.

was demonstrated as a new sorbent for flow injection online microcolumn preconcentration and FAAS determination of trace Pb (II) in environmental and biological samples. The PAN-doped silica gel showed fast sorption/desorption kinetics and reusability. Also, the FI online SPE coupled with FAAS system showed a relatively high tolerance of the matrix elements. Compared with the data from recent articles on the online preconcentration and determination of trace Pb (II) (summarized in Table 4), the detection limit of the determinations in the present work was lower than those of some other methods^[20,34-46] with a relatively high enrichment factor and sampling frequency.

ACKNOWLEDGMENTS

This work was financially supported by the Natural Science Foundation of Zhejiang Province (No. Y405377).

REFERENCES

- WHO (World Health Organization). *Guidelines for Drinking-Water Quality: Health Criteria and Other Supporting Information*; Mastercom/Wiener Verlag: Wien, Austria, 1996.
- Martina, P.; Krista, K. Experimental studies on reproductive and perinatal effects of lead and cadmium. *Environ. Manage. Health* **1996**, *7*(4), 29-32.
- Fang, Z.; Guo, T.; Welz, B. Determination of cadmium, lead and copper in water samples by flame atomic-absorption spectrometry with preconcentration by flow-injection on-line sorbent extraction. *Talanta* **1991**, *38*, 613-619.
- Nasu, A.; Yamauchi, A.; Sekine, T. Solvent extraction of copper (I) and (II) as thiocyanate complexes with tetrabutylammonium ions into chloroform and with trioctylphosphine oxide into hexane. *Anal. Sci.* **1997**, *13*, 903-911.
- Chen, H. W.; Xu, S. K.; Fang, Z. Electrothermal atomic absorption spectrometric determination of molybdenum in water, human hair and high-purity materials. *J. Anal. At. Spectrom.* **1995**, *18*, 533-537.
- Stalikas, C. D. Micelle-mediated extraction as a tool for separation and preconcentration in metal analysis. *Trends Anal. Chem.* **2002**, *21*(5), 343-355.
- Beinrohr, E.; Rapti, M.; Lee, M.; Tschöpel, P.; Tölget, G. Online electrochemical preconcentration of manganese for graphite furnace atomic absorption spectrometry using a flow-through electrochemical cell. *Microchim. Acta* **1993**, *110*, 1-12.
- Arpadjan, S.; Vuchkova, L.; Kostadinova, E. Sorption of As, Bi, Hg, Sb, Se and Sn on dithiocarbamate loaded polyurethane foam as a preconcentration method for their determination in water samples by simultaneous inductively coupled plasma atomic emission spectrometry and electrothermal atomic absorption spectrometry. *Analyst* **1997**, *122*, 243-246.
- Fang, Z. *Flow Injection Separation and Preconcentration*; VCH: Weinheim, 1993, 203.
- Shemirani, F.; Akhavi, B. T. S. Preconcentration and determination of trace cadmium using PAN immobilized on surfactant-coated alumina. *Anal. Lett.* **2001**, *34*(12), 2179-2188.
- Pilar, B. B.; Alfonso, N. M.; Díaz, L. C.; Bermejo, B. A. Use of Amberlite XAD-2 loaded with 1-(2-pyridylazo)-2-naphthol as a preconcentration system for river water prior to determination of Cu²⁺, Cd²⁺ and Pb²⁺ by flame atomic absorption spectroscopy. *Microchim. Acta* **2003**, *142*(1-2), 101-108.
- Ibrahim, N.; Mustafa, S. The uses of 1-(2-pyridylazo) 2-naphthol (PAN) impregnated Amborsorb 563 resin on the solid phase extraction of traces heavy metal ions and their determinations by atomic absorption spectrometry. *Talanta* **2003**, *60*(1), 215-221.
- Mustafa, S.; Nilgün, D. E.; Latif, E. Membrane filtration of Iron(III), Copper(II) and Lead(II) ions as PAN for their preconcentration and atomic absorption determinations. *J. Chin. Chem. Soc. (Taipei, Taiwan)* **2004**, *51*(4), 703-706.
- Mustafa, S.; Ibrahim, N.; Mehmet, D. T. Trace enrichment and atomic absorption spectrometric determination of lead, copper, cadmium and nickel in drinking water samples by use of an activated carbon column. *Anal. Lett.* **1997**, *30*(15), 2801-2810.
- Bohrer, D.; Nascimento, P. C.; Guterres, M.; Trevisan, M.; Seibert, E. Electrothermal atomic absorption spectrometric determination of lead, cadmium, copper and zinc in high-salt content samples after simultaneous separation on polyethylene powder impregnated with 1-(2-pyridylazo)-2-naphthol: Application to the analysis of hemodialysis fluids. *Analyst* **1999**, *124*, 1345-1350.
- Taher, M. A. Atomic absorption spectrometric determination of trace zinc in alloys and biological samples after preconcentration with [1-(2-pyridylazo)-2-naphthol] on microcrystalline naphthalene. *Analyst* **2000**, *125*, 1865-1868.
- Narin, L.; Soylak, M.; Elci, L.; Dogan, M. Separation and enrichment of chromium, copper, nickel and lead in surface seawater samples on a column filled with Amberlite XAD-2000. *Anal. Lett.* **2001**, *34*, 1935-1947.
- Yang, L.; Hu, B.; Jiang, Z.; Pan, H. Online separation and preconcentration of trace metals in biological samples using a microcolumn loaded with PAN-modified nanometer-sized titanium dioxide, and their determination by ICP-AES. *Microchim. Acta* **2004**, *144*(4), 227-231.
- Tuzen, M.; Parlar, K.; Soylak, M. Enrichment/separation of cadmium (II) and lead (II) in environmental samples by solid phase extraction. *J. Hazard. Mater.* **2005**, *121*(1-3), 79-87.
- Souza, A. S.; Brandão, G. C.; Santos, W. N. L.; Lemos, V. A.; Ganzarolli, E. M.; Bmn, R. E.; Ferreira Sérgio, L. C. Automatic Online pre-concentration system using a knotted reactor for the FAAS determination of lead in drinking water. *J. Hazard. Mater.* **2007**, *141*(3), 540-545.
- Ruzicka, J.; Arndal, A. Sorbent extraction in flow injection analysis and its application to enhancement of atomic spectrometry. *Anal. Chim. Acta* **1989**, *216*, 243-255.
- Río-Segade, S.; Pérez-Cid, B.; Bendicho, C. Preconcentration of lead, cadmium and zinc on silica gel loaded with diethylthiocarbamate prior to their determination by flame-atomic absorption spectrometry. *Fresenius' J. Anal. Chem.* **1995**, *351*(8), 701-809.
- Yan, X. P.; Michael, S.; Welz, B. Application of a macrocycle immobilized silica gel sorbent to flow injection online microcolumn preconcentration and separation coupled with flame atomic absorption spectrometry for interference-free determination of trace lead in biological and environmental samples. *Anal. Chem.* **1997**, *71*(19), 4216-4222.
- Pu, Q. S.; Sun, Q. Y.; Hu, Z. D. Su, Z. X. Application of 2-mercaptopbenzothiazole-modified silica gel to on-line preconcentration and separation of silver for its atomic absorption spectrometric determination. *Analyst* **1998**, *123*, 239-243.
- Madrakian, T.; Afkhami, A.; Zolfigol, M. A.; Solgi, M. Separation, preconcentration and determination of silver ion from water samples using silica gel modified with 2, 4, 6-timorpholino-1, 3, 5-triazin. *J. Hazard. Mater.* **2006**, *128*(1), 67-72.
- Safavi, A.; Irampoor, N.; Saghiri, N.; Momemi, S. Glycerol-silica gel: A New solid sorbent for preconcentration and determination of traces of cobalt (II) ion. *Anal. Chim. Acta* **2006**, *569*(1-2), 139-144.

27. Lu, J. Q.; Lu, G. Y.; Wang, J. M. Enrichment and determination of trace cadmium in water with cadion 2b on silica gel. *J. Anal. Sci.* **1999** (4), 15(2), 140–142.

28. Huang, X.; Chang, X.; He, Q.; Jiang, N. Tris(2-aminoethyl) amine functionalized silica gel for solid-phase extraction and preconcentration of Cr(III), Cd(II) and Pb(II) from waters. *J. Hazard. Mater.* **2008**, 157(1), 154–160.

29. Baytak, S.; Türker, A. R.; Çevrimli, B. S. Application of silica gel 60 loaded with aspergillus niger as a solid phase extractor for the separation/preconcentration of chromium(III), copper(II), zinc(II), and cadmium(II). *J. Sep. Sci.* **2005**, 28(18), 2482–2488.

30. D'yachenko, N. A.; Trofimchuk, A. K.; Sukhan, V. V. Sorption of cobalt as a nitroso-r-salt complex on silica gels modified with triphenylphosphonium groups followed by determination in the adsorbent phase. *J. Anal. Chem.* **2002**, 57(11), 1022–1024.

31. Zaporozhets, O.; Petruniok, N.; Bessarabova, O.; Sukhan, V. Determination of Cu(II) and Zn(II) using silica gel loaded with 1-(2-thiasolylazo)-2-naphthol. *Talanta* **1999**, 49, 899–906.

32. Zolotov, Y. A.; Maksimova, I. M.; Morosanova, E. I.; Velikorodny, A. A. Online coated columns for the spectrophotometric determination of metals by continuous flow analysis. *Anal. Chim. Acta* **1995**, 308, 378–385.

33. Khan, A.; Mahmood, F.; Ahmed, S.; Khokhar, M.Y. Removal of Cd ions by sol-gel silica doped with PAN. *J. Sol-Gel Sci. Technol.* **2003**, 27, 221–224.

34. Seki, T.; Hirano, Y.; Oguma, K. Online preconcentration and determination of traces of lead in river-water and seawater by flow injection-flame atomic absorption spectrometry and ICP-mass spectrometry. *Anal. Sci.* **2002**, 18(3), 351–354.

35. Ensafi, A. A.; Khayamian, T.; Karbasi, M. H. Online preconcentration system for lead(II) determination in waste water by atomic absorption spectrometry using active carbon loaded with pyrogallol red. *Anal. Sci.* **2003**, 19, 953–956.

36. Biurrun, M. C.; Barrera, A. B.; Barrera, M. P.; Bermejobarrera, A. Determination of trace metals in natural waters by flame atomic absorption spectrometry following on-line ion-exchange preconcentration. *Anal. Chim. Acta* **1995**, 303, 341–345.

37. Lemos, A. V.; Sérgio, L. C. F. Online preconcentration system for lead determination in seafood samples by flame atomic absorption spectrometry using polyurethane foam loaded with 2-(2-benzothiazolylazo)-2-p-cresol. *Anal. Chim. Acta* **2001**, 441(2), 281–289.

38. Silva, J. B. B.; Rollemburg, S. P. Q. Online preconcentration with different solid adsorbents for lead determination. *Fresenius' J. Anal. Chem.* **2001**, 369(7–8), 657–660.

39. Praveen, R. S.; Naidu, G. R. K.; Prasada Rao, T. Inorganic Materials Group. Dithiocarbamate functionalized or surface sorbed merrifield resin beads as column materials for on line flow injection-flame atomic absorption spectrometry determination of lead. *Anal. Chim. Acta* **2007**, 600(1–2), 205–213.

40. Ensafi, A. A.; Shiraz, A. Z. Online separation and preconcentration of lead(II) by solid-phase extraction using activated carbon loaded with xylanol orange and its determination by flame atomic absorption spectrometry. *J. Hazard. Mater.* **2008**, 150(3), 554–559.

41. Barbosa, A. F.; Segatelli, M. G.; Pereira, A. C.; Santos, A. S.; Kubota, L. T.; Luccas, P. O.; Tarley, C. R. T. Solid-phase extraction system for Pb (II) ions enrichment based on multiwall carbon nanotubes coupled online to flame atomic absorption spectrometry. *Talanta* **2007** (3), 71(4), 1512–1519.

42. Anthemidis, A. N.; Ioannou, K. I. G. Evaluation of polychlorotrifluoroethylene as sorbent material for online solid phase extraction systems: Determination of copper and lead by flame atomic absorption spectrometry in water samples. *Anal. Chim. Acta* **2006** (8), 575(1), 126–132.

43. Dadfarnia, S.; Shabani, A. M. H.; Tamaddon, F.; Rezaei, M. Immobilized salen (N, N'-bis (salicylidene) ethylenediamine) as a complexing agent for online sorbent extraction/preconcentration and flow injection-flame atomic absorption spectrometry. *Anal. Chim. Acta* **2005**, 539(1–2), 69–75.

44. Bermejo-Barrera, P.; Nancy, M. A.; Cristina, D. L.; Adela, B. B. Use of Amberlite XAD-2 loaded with 1-(2-pyridylazo)-2-naphthol as a preconcentration system for river water prior to determination of Cu²⁺, Cd²⁺ and Pb²⁺ by flame atomic absorption spectroscopy. *Microchim. Acta* **2003**, 142(1–2), 101–108.

45. Melek, E.; Tuzen, M.; Soylak, M. Flame atomic absorption spectrometric determination of cadmium (II) and lead (II) after their solid phase extraction as dibenzylidithiocarbamate chelates on Dowex Optipore V-493. *Anal. Chim. Acta* **2006**, 578(2), 213–219.

46. Tuzen, M.; Saygi, K. O.; Soylak, M. Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes. *J. Hazard. Mater.* **2008**, 152(2), 632–639.